首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   49篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   9篇
  2019年   10篇
  2018年   11篇
  2017年   16篇
  2016年   15篇
  2015年   35篇
  2014年   32篇
  2013年   28篇
  2012年   46篇
  2011年   49篇
  2010年   27篇
  2009年   18篇
  2008年   33篇
  2007年   29篇
  2006年   32篇
  2005年   35篇
  2004年   26篇
  2003年   29篇
  2002年   17篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1966年   1篇
  1951年   1篇
排序方式: 共有566条查询结果,搜索用时 125 毫秒
91.
92.

Background

In osteoarthritis (OA), an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β.

Methodology/Principal Findings

The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1) was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR) and protein (ELISA or western blot) levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13.

Conclusions/Significance

Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a pivotal anabolic cytokine in cartilage whose impairment impacts on OA pathogenesis.  相似文献   
93.

Background & Aims

The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD). However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients.

Methods

N = 52 patients (n = 16 NAFLD and n = 36 Non-alcoholic steatohepatitis (NASH) patients) and n = 50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration.

Results

Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001). In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH.

Conclusions

Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.  相似文献   
94.
In this study, we performed the molecular and biochemical characterization of an ecto-enzyme present in Trypanosoma rangeli that is involved with the hydrolysis of extracellular inorganic pyrophosphate. PCR analysis identified a putative proton-pyrophosphatase (H+-PPase) in the epimastigote forms of T. rangeli. This protein was recognized with Western blot and flow cytometry analysis using an antibody against the H+-PPase of Arabidopsis thaliana. Immunofluorescence microscopy confirmed that this protein is located in the plasma membrane of T. rangeli. Biochemical assays revealed that the optimum pH for the ecto-PPase activity was 7.5, as previously demonstrated for other organisms. Sodium fluoride (NaF) and aminomethylenediphosphonate (AMDP) were able to inhibit approximately 75% and 90% of the ecto-PPase activity, respectively. This ecto-PPase activity was stimulated in a dose-dependent manner by MgCl2. In the presence of MgCl2, this activity was inhibited by millimolar concentrations of CaCl2. The ecto-PPase activity of T. rangeli decreased with increasing cell proliferation in vitro, thereby suggesting a role for this enzyme in the acquisition of inorganic phosphate (Pi). Moreover, this activity was modulated by the extracellular concentration of Pi and increased approximately two-fold when the cells were maintained in culture medium depleted of Pi. All of these results confirmed the occurrence of an ecto-PPase located in the plasma membrane of T. rangeli that possibly plays an important role in phosphate metabolism of this protozoan.  相似文献   
95.
A full-length cDNA sequence coding for dehydration-responsive protein gene of mulberry tree, which we designated was MRD22 (GenBank accession number: JQ804833) was cloned based on mulberry expressed sequence tags (ESTs). MRD22 is 1503 bp long, contains a 334 bp 5′-UTR (untranslated region) and a 563 bp 3′-UTR, encodes 201 amino acids with a predicted molecular weight of 54.28 kDa and an isoelectric point of 9.35. Phylogenetic analysis based on MRD22 sequences from different species showed that mulberry has close relationship with Populus trichocarpa, Ricinus communis, Camellia sinensis, Gossypium hirsutum, Gossypium barbadense and so on. The expression level of the MRD22 gene under conditions of drought, low temperature and salt stresses was quantified by qRT-PCR. The results show that the expression level changed significantly under the stress conditions compared to the normal growth environment. It helps us to get a better understanding of the molecular basis for signal transduction mechanisms underlying the stress response in mulberry.  相似文献   
96.
Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space.  相似文献   
97.
Therapeutic options to control respiratory syncytial virus (RSV) are limited, thus development of new therapeutics is high priority. Previous studies with a monoclonal antibody (mAb) reactive to an epitope proximal to the central conserved region (CCR) of RSV G protein (mAb 131-2G) showed therapeutic efficacy for reducing pulmonary inflammation RSV infection in BALB/c mice. Here, we show a protective effect in RSV-infected mice therapeutically treated with a mAb (130-6D) reactive to an epitope within the CCR of G protein, while treatment with a mAb specific for a carboxyl G protein epitope had no effect. Combined treatment with mAbs 130-6D and 131-2G significantly decreased RSV-associated pulmonary inflammation compared to either antibody alone. The results suggest that anti-RSV G protein mAbs that react at or near the CCR and can block RSV G protein-mediated activities are effective at preventing RSV disease and may be an effective strategy for RSV therapeutic treatment.  相似文献   
98.
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by autoantibodies (NMO‐IgG) against the water channel aquaporin‐4 (AQP4). Though AQP4 is also expressed outside the CNS, for example in skeletal muscle, patients with NMO generally do not show clinical/diagnostic evidence of skeletal muscle damage. Here, we have evaluated whether AQP4 supramolecular organization is at the basis of the different tissue susceptibility. Using immunofluorescence we found that while the sera of our cohort of patients with NMO gave typical perivascular staining in the CNS, they were largely negative in the skeletal muscle. This conclusion was obtained using human, rat and mouse skeletal muscle including the AQP4‐KO mouse. A biochemical analysis using a new size exclusion chromatography approach for AQP4 suprastructure fractionation revealed substantial differences in supramolecular AQP4 assemblies and isoform abundance between brain and skeletal muscle matching a lower binding affinity of NMO‐IgG to muscle compared to the brain. Super‐resolution microscopy analysis with g‐STED revealed different AQP4 organization in native tissues, while in the brain perivascular astrocyte endfoot membrane AQP4 was mainly organized in large interconnected and raft‐like clusters, in the sarcolemma of fast‐twitch fibres AQP4 aggregates often appeared as small, relatively isolated linear entities. In conclusion, our results provide evidence that AQP4 supramolecular structure is different in brain and skeletal muscle, which is likely to result in different tissues susceptibility to the NMO disease.  相似文献   
99.
The use of dermal substitutes to treat skin defects such as ulcers has shown promising results, suggesting a potential role for skin substitutes for treating acute and chronic wounds. One of the main drawbacks with the use of dermal substitutes is the length of time from engraftment to graft take, plus the risk of contamination and failure due to this prolonged integration. Therefore, the use of adjuvant energy‐based therapeutic modalities to augment and accelerate the rate of biointegration by dermal substitute engraftments is a desirable outcome. The photobiomodulation (PBM) therapy modulates the repair process, by stimulating cellular proliferation and angiogenesis. Here, we evaluated the effect of PBM on a collagen‐glycosaminoglycan flowable wound matrix (FWM) in an ex vivo human skin wound model. PBM resulted in accelerated rate of re‐epithelialization and organization of matrix as seen by structural arrangement of collagen fibers, and a subsequent increased expression of alpha‐smooth muscle actin (α‐SMA) and vascular endothelial growth factor A (VEGF‐A) leading to an overall improved healing process. The use of PBM promoted a beneficial effect on the rate of integration and healing of FWM. We therefore propose that the adjuvant use of PBM may have utility in enhancing engraftment and tissue repair and be of value in clinical practice.   相似文献   
100.
The banker plant system has been introduced for the biological control of various pest species in Japanese greenhouses. With the banker plant system, non-crop plants infested with a host insect (a non-commercial crop pest) are placed in the greenhouse to provide alternative resources for the parasitoids or predators. We want to evaluate the effectiveness for controlling pests on the crop in a quantitative way by immigrating predators from the banker plant. Therefore, we developed a simple model for the interaction of the pest and predator in the crop and included the banker plant only as a source for predators. For three different pest-predator systems we parameterised the model and used these models to predict under what conditions biological control in a banker plant system is successful. We defined successful as keeping the pest below the economic injury level of the crop estimated from damage analysis. Because the crop is mostly grown during a period that lasts less than a year our analysis should not only focus on the equilibrium dynamics. In contrast, it should also focus on the transient dynamics. Our main analytical result, from the equilibrium analysis, is that for successful control the maximum lifetime consumption of immigrating predators should exceed the daily prey growth at half the value of the maximum consumption rate. For practical purpose this translates into the fact that the immigration of predators at a low initial pest density is crucial for successful control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号